If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9z^2+18z+7=0
a = 9; b = 18; c = +7;
Δ = b2-4ac
Δ = 182-4·9·7
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-6\sqrt{2}}{2*9}=\frac{-18-6\sqrt{2}}{18} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+6\sqrt{2}}{2*9}=\frac{-18+6\sqrt{2}}{18} $
| 5p-7=3p+3 | | 3x√2-9=0 | | x+20-2x-10+x+16=90 | | F(-1)=4x^2-9x+7 | | 5x+78=114 | | 47x+2=92 | | Q=400-100p | | -.009t^2+3.15t-135=0 | | Q=280+20p | | x÷3/8=5 | | 6x=3(x+20) | | -2x+7-(-3x)-8=7 | | 9=16+k/9 | | X+2^3=2x+1 | | 22-w=30 | | s+13=-6 | | 7m+8-4m-5= | | 2x-20=4x+9 | | X+2•3=2x+1 | | -u+137=231 | | X+2x3=2x+1 | | 161=-y+207 | | 279-v=144 | | 8x+,5x=7x+6 | | 4=x+37/7 | | 11+2x/12=0 | | 3x/5×1/3×1/4=145 | | -21+x/5=-7 | | 15m×7=7m+55 | | s=-1/3s | | 7x+6=56/3x | | -16t^2+144t=308 |